

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: VLSI Design (18EC0431)

Course & Branch: B.Tech - ECE

Regulation: R18 Year & Sem: IV-B.Tech & I-Sem

UNIT –I INTRODUCTION AND BASIC ELECTRICAL PROPERTIES OF MOS AND Bi-CMOS CIRCUITS

1	a)	Enumerate various VLSI Technologies?	[L1] [CO2]	[2M]
	b)	Define Threshold Voltage of the MOS transistor.	[L1] [CO2]	[2M]
	c)	List the figure of merit of the MOS transistor.	[L1] [CO2]	[2M]
	d)	Define Transconductance and Output Conductance.	[L1] [CO2]	[2M]
	e)	Discuss about body bias effect in the NMOS Transistor.	[L2] [CO2]	[2M]
2	a)	Explain working of the NMOS Transistor.	[L2] [CO2]	[6M]
	b)	Summarize the evolution of microelectronics.	[L2] [CO1]	[4M]
3	a)	What is the need of VLSI circuits?	[L1] [CO2]	[4M]
	b)	Compare the relative merits of three different forms of pull up for an	[L2] [CO2]	[6M]
		invertercircuit. Which is the best choice for realization?		
4	a)	Compare CMOS with Bipolar technology in different aspects.	[L2] [CO1]	[4M]
	b)	Show the circuit diagram of a simple BiCMOS inverter and explain	[L1] [CO2]	[6M]
		itsoperation.		
5		Determine the relationship between I _{ds} & V _{ds} in non-saturated and	[L3] [CO2]	[10M]
		saturated region.		
6		Illustrate the steps involved in nMOS fabrication process with neat	[L2] [CO1]	[10M]
		sketches.	FT 43 5 G 0 43	5.43.53
7	a)	Illustrate about basic MOS transistors.	[L2] [CO1]	[4M]
	b)	Explain the steps involved in Bi-CMOS fabrication process.	[L2] [CO1]	[6M]
8		Distinguish various pull-up loads used in Inverter Circuit.	[L4] [CO5]	[10M]
9		Explain the steps involved in pMOS fabrication process with neat sketches.	[L2] [CO1]	[10M]
10	a)	Explain the steps involved in p-well CMOS fabrication process with	[L2] [CO1]	[6M]
		neatsketches.		
	b)	C.	[L1] [CO1]	[4M]
11		Explain the following briefly	[L2] [CO2]	[10M]
		(i) Channel length Modulation		
		(ii) Transconductance		
		(iii) Output Conductance		
		(iv) Figure of merit (ω_0)		

UNIT –II VLSI CIRCUIT DESIGN PROCESS

1	a)	List different MOS layers.	[L1] [CO3]	[2M]
	b)	Draw the circuit diagram of CMOS Inverter Circuit.	[L4] [CO3]	[2M]
	c)	Illustrate nMOS transistor in λ-based design rule.	[L2] [CO3]	[2M]
	d)	Illustrate a contact cut in λ -based design rule.	[L2] [CO3]	[2M]
	e)	Illustrate pMOS transistor in 2µm design rule.	[L2] [CO3]	[2M]
2	a)	Explain the steps involved in VLSI Design flow.	[L2] [CO3]	[5M]
	b)	Construct the stick diagram of a 2-input CMOS NAND gate.	[L3] [CO3]	[5M]
3	a)	What is lambda-based design rules? Explain.	[L1] [CO3]	[5M]
	b)	Illustrate design rules for wires and MOS transistors.	[L2] [CO3]	[5M]
4	a)	Summarize 2µm based design rules with neat sketches.	[L2] [CO3]	[5M]
	b)	Draw the layout diagram of NMOS inverter circuit such that both	[L4] [CO3]	[5M]
		input andoutput points are connected with Polysilicon layer.		
5	a)	Explain about Stick diagram with one example.	[L2] [CO3]	[5M]
	b)	Sketch the layout diagram for 2-input CMOS NAND gate.	[L3] [CO3]	[5M]
6	a)	Explain 2µm design rules for contacts and transistors.	[L2] [CO3]	[5M]
	b)	Sketch the layout diagram for CMOS inverter.	[L3] [CO3]	[5M]
7	a)	Construct stick diagram for $Y = \overline{(AB + CD)}$ in NMOS design style.	[L3] [CO3]	[5M]
	b)	Construct the layout diagram for 2-input CMOS NOR gate.	[L3] [CO3]	[5M]
8		Construct layout diagram for the logic equations in CMOS logic.	[L3] [CO3]	[10M]
		(i) $Y = \overline{(A+B)C}$ (ii) $Z = \overline{(AB+CD)E}$		
9	a)	Illustrate λ-design rules for contact cuts.	[L2] [CO3]	[5M]
	b)	How a p-MOS transistor forms in lambda-based design rules? Explain.	[L1] [CO3]	[5M]
10	a)	Illustrate stick diagram of AND-OR-INVERTER in CMOS design Style.	[L2] [CO3]	[5M]
	b)	Explain about Implant and demarcation line in stick diagrams with neat	[L2] [CO3]	[5M]
		sketches.		
11	a)	Construct the stick diagram for 2-input CMOS XOR gate.	[L3] [CO3]	[5M]
	b)	Explain different types of MOS layers used in VLSI circuits.	[L2] [CO1]	[5M]

UNIT –III GATE LEVEL DESIGN & PHYSICAL DESIGN

			FT 13 FCC 43	FAN #1
1	a)	Briefly describe Switch logic.	[L1] [CO4]	[2M]
	b)	List Alternate gate circuits.	[L1] [CO5]	[2M]
	c)	List the Complex gates circuits.	[L1] [CO5]	[2M]
	d)	Define Placement in the Physical design.	[L1] [CO5]	[2M]
	e)	Define Routing in the geometrical layouts.	[L1] [CO5]	[2M]
2	a)	Sketch 2 x 1 mux using transmission gates.	[L3] [CO4]	[5M]
	b)	Explain the implementation of AOI using CMOS design style with neat	[L2] [CO4]	[5M]
		sketches.		
3	a)	What is switch logic? Explain with an example.	[L1] [CO4]	[5M]
	b)	Explain about pass transistors logic with an example.	[L2] [CO4]	[5M]
4	a)	What is pseudo NMOS logic? Explain with an example	[L1] [CO4]	[5M]
	b)	Construct 2-input NAND gate by using pseudo NMOS logic.	[L3] [CO4]	[5M]
5	a)	Explain dynamic CMOS logic circuit with an example.	[L2] [CO4]	[5M]
	b)	List the advantages & disadvantages of dynamic CMOS logic.	[L1] [CO4]	[5M]
6		Explain the following with an example.	[L2] [CO6]	[10M]
		(i) Domino CMOS logic. (ii) NORA logic.		
7	a)	Explain the criteria for choice of layers.	[L2] [CO6]	[5M]
	b)	Explain about complex logic gates.	[L2] [CO4]	[5M]
8		What is the necessity of floor planning concept in VLSI circuits? Discuss	[L2] [CO5]	[10M]
		withsuitable example.		
9		What are the design methods used in physical design cycle? Explain each	[L1] [CO4]	[10M]
		termwith suitable diagrams.		
10	a)	Discuss about the Power Estimation in CMOS circuit.	[L2] [CO5]	[5M]
	b)	Explain about Power delay estimation in VLSI circuits.	[L2] [CO5]	[5M]
11		Explain the following terms	[L2] [CO5]	[10M]
		(i) Floor planning		
		(ii) Placement		
		(iii) Routing		

UNIT –IV SUBSYSTEM DESIGN

1	a)	Define the Counters in the digital circuit.	[L1] [CO4]	[2M]
	b)	What are the high-density memory elements? Explain in brief.	[L2] [CO5]	[2M]
	c)	Define Parity generator logic circuits.	[L1] [CO4]	[2M]
	<u>d)</u>	Define Comparator logic circuit.	[L1] [CO4]	[2M]
	e)	Differentiate Comparator and Magnitude Comparator.	[L2] [CO4]	[2M]
2		Explain different adder designs in sub circuit design with neat sketches.	[L2] [CO4]	[10M]
3	a)	What is shifter? List the types of shift registers and explain.	[L1 & L2]	[5M]
			[CO4]	
	b)	Construct and explain the operation of shifter implemented by full adder.	[L3 & L2]	[5M]
			[CO4]	F4.03. #3
4		Explain the following logic circuit.	[L2] [CO4]	[10M]
		(i) Parity Generator (ii) Comparator.		
5		Design an Arithmetic and Logic Unit circuit with four functions using	[L6] [CO4]	[10M]
		multiplexers and explain its operation.		
6	a)	Compare different types of memory elements.	[L2] [CO4]	[5M]
	b)	Develop the 4x4 array multiplier.	[L3] [CO4]	[5M]
7	a)	Explain the working of Zero/one detector implemented with adder circuit.	[L2] [CO4]	[6M]
	b)	List the advantages and applications of Zero/one detector.	[L1] [CO4]	[4M]
8		Summarize the following.	[L2] [CO4]	[10M]
		(i) Unsigned magnitude comparator. (ii) Asynchronous Counters.		
9	a)	Construct and explain the circuit diagram of 3-bit LFSR with example.	[L3] [CO4]	[5M]
	b)	Construct and explain the Johnson counter.	[L3] [CO4]	[5M]
10	a)	Construct and explain the circuit diagram of 4-bit Ripple Carry Adder.	[L3] [CO4]	[5M]
	b)	Construct and explain the ripple counter.	[L3] [CO4]	[5M]
11	a)	Explain about 4 transistor Dynamic memory cell.	[L2] [CO4]	[5M]
	b)	Explain about 6 transistor Static memory cell.	[L2] [CO4]	[5M]

UNIT -V SEMICONDUCTOR INTEGRATED CIRCUIT DESIGN AND CMOS TESTING

1	a)	Classify PLD.	[L2] [CO6]	[2M]
	b)	What is the need of Testing?	[L1] [CO6]	[2M]
	<u>c)</u>	Differentiate FPGA and CPLD.	[L2] [CO6]	[2M]
	d)	Explain what are the test principles available for the VLSI testing?	[L2] [CO6]	[2M]
	e)	Enumerate the advantages of CPLD.	[L1] [CO6]	[2M]
	f)	List the Boundary Scan Standards.	[L1] [CO6]	
2	a)	Compare PROM, PAL, and PLA with an example.	[L2] [CO6]	[5M]
	b)	Design the PAL Structure for the Boolean function $\mathbf{f1}(\mathbf{a,b,c,d}) = \mathbf{ab+bc} \ &$	[L6] [CO6]	[5M]
		f2(a,b,c,d)=ab+cd.		
3	a)	Illustrate the architecture of FPGA with neat sketch.	[L2] [CO6]	[5M]
	b)	Discuss about the merits of FPGA over other PLD architectures.	[L2] [CO6]	[5M]
4	a)	Describe about CPLD structure in detail and explain each block.	[L1] [CO6]	[5M]
	b)	Generalize the design approach for VSLI system design.	[L2] [CO6]	[5M]
5		Design the following functions in PLA structure.	[L6] [CO6]	[10M]
		(i) Y1=A'B'C'+ABC+A'B+ABC'		
		(ii) Y2=ABC+A'B'C+AC		
		(iii) Y3=A'BC'+AB'C+B'C'		
6	a)	Explain in detail about standard cell design with suitable diagrams.	[L2] [CO6]	[5M]
	b)	Give examples of various fault models available for VLSI testing?	[L2] [CO6]	[5M]
7	a)	What is the need for testing? Explain about Fault simulation.	[L1] [CO6]	
	b)	Give a logic circuit example in which stuck-at-1 fault and stuck-at-0 fault are indistinguishable.	[L2] [CO6]	[5M]
8	a)	What is FPGA. Draw and explain basic structure of FPGA.	[L2] [CO6]	[5M]
	b)	Discuss about the Fault coverage and how to find it?	[L1] [CO6]	[5M]
9	,	Explain Chip Level Test techniques and its methodology.	[L2] [CO6]	[5M]
10	a)	What is testing? Explain any three test principles.	[L1] [CO6]	[10M]
	b)	What is controllability and observability? Give examples to explain it.	[L2] [CO6]	[5M]
11		What is BILBO? Draw the logic diagram of BILBO & explain its operation	[L1 & L2]	[10M]
		in different modes?	[CO6]	

Prepared By
1. K D Mohana Sundaram **Assistant Professor**

Department of ECE 2. C Vijayabaskar

Associate Professor

Department of ECE

3. M Madhavi

Assistant Professor

Department of ECE